55 research outputs found

    DIAGNOSE: Avoiding Out-of-distribution Data using Submodular Information Measures

    Full text link
    Avoiding out-of-distribution (OOD) data is critical for training supervised machine learning models in the medical imaging domain. Furthermore, obtaining labeled medical data is difficult and expensive since it requires expert annotators like doctors, radiologists, etc. Active learning (AL) is a well-known method to mitigate labeling costs by selecting the most diverse or uncertain samples. However, current AL methods do not work well in the medical imaging domain with OOD data. We propose Diagnose (avoiDing out-of-dIstribution dAta usinG submodular iNfOrmation meaSurEs), a novel active learning framework that can jointly model similarity and dissimilarity, which is crucial in mining in-distribution data and avoiding OOD data at the same time. Particularly, we use a small number of data points as exemplars that represent a query set of in-distribution data points and a private set of OOD data points. We illustrate the generalizability of our framework by evaluating it on a wide variety of real-world OOD scenarios. Our experiments verify the superiority of Diagnose over the state-of-the-art AL methods across multiple domains of medical imaging.Comment: Accepted to MICCAI 2022 MILLanD Worksho

    Robust Linear Hybrid Beamforming Designs Relying on Imperfect CSI in mmWave MIMO IoT Networks

    Full text link
    Linear hybrid beamformer designs are conceived for the decentralized estimation of a vector parameter in a millimeter wave (mmWave) multiple-input multiple-output (MIMO) Internet of Things network (IoTNe). The proposed designs incorporate both total IoTNe and individual IoTNo power constraints, while also eliminating the need for a baseband receiver combiner at the fusion center (FC). To circumvent the non-convexity of the hybrid beamformer design problem, the proposed approach initially determines the minimum mean square error (MMSE) digital transmit precoder (TPC) weights followed by a simultaneous orthogonal matching pursuit (SOMP)-based framework for obtaining the analog RF and digital baseband TPCs. Robust hybrid beamformers are also derived for the realistic imperfect channel state information (CSI) scenario, utilizing both the stochastic and norm-ball CSI uncertainty frameworks. The centralized MMSE bound derived in this work serves as a lower bound for the estimation performance of the proposed hybrid TPC designs. Finally, our simulation results quantify the benefits of the various designs developed.Comment: 15 pages, 7 figure

    Antixenosis and antibiosis mechanisms of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea, Cicer arietinum

    Get PDF
    The noctuid pod borer, Helicoverpa armigera is one of the most damaging pests of chickpea, Cicer arietinum. The levels of resistance to H. armigera in the cultivated chickpea are low to moderate, but the wild relatives of chickpea have exhibited high levels of resistance to this pest. To develop insect-resistant cultivars with durable resistance, it is important to understand the contribution of different components of resistance, and therefore, we studied antixenosis and antibiosis mechanisms of resistance to H. armigera in a diverse array of wild relatives of chickpea. The genotypes IG 70012, PI 599046, IG 70022, PI 599066, IG 70006, IG 70018 (C. bijugum), ICC 506EB, ICCL 86111 (cultivated chickpea), IG 72933, IG 72953 (C. reticulatum), IG 69979 (C. cuneatum) and IG 599076 (C. chrossanicum) exhibited non preference for oviposition by the females of H. armigera under multi-choice, dual-choice and no-choice cage conditions. Based on detached leaf assay, the genotypes IG 70012, IG 70022, IG 70018, IG 70006, PI 599046, PI 599066 (C. bijugum), IG 69979 (C. cuneatum), PI 568217, PI 599077 (C. judaicum) and ICCW 17148 (C. microphyllum) suffered significantly lower leaf damage, and lower larval weights indicating high levels of antibiosis than on the cultivated chickpea. Glandular and non-glandular trichomes showed negative correlation with oviposition, while the glandular trichomes showed a significant and negative correlation with leaf damage rating. Density of non-glandular trichomes was negatively correlated with larval survival. High performance liquid chromatography (HPLC) fingerprints of leaf surface exudates showed a negative correlation of oxalic acid with oviposition, but positive correlation with malic acid. Both oxalic acid and malic acid showed a significant negative correlation with larval survival. The wild relatives exhibiting low preference for oviposition and high levels of antibiosis can be used as sources of resistance to increase the levels and diversify the basis of resistance to H. armigera in cultivated chickpea

    Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) includes a comprehensive assessment of incidence, prevalence, and years lived with disability (YLDs) for 354 causes in 195 countries and territories from 1990 to 2017. Previous GBD studies have shown how the decline of mortality rates from 1990 to 2016 has led to an increase in life expectancy, an ageing global population, and an expansion of the non-fatal burden of disease and injury. These studies have also shown how a substantial portion of the world's population experiences non-fatal health loss with considerable heterogeneity among different causes, locations, ages, and sexes. Ongoing objectives of the GBD study include increasing the level of estimation detail, improving analytical strategies, and increasing the amount of high-quality data. Methods: We estimated incidence and prevalence for 354 diseases and injuries and 3484 sequelae. We used an updated and extensive body of literature studies, survey data, surveillance data, inpatient admission records, outpatient visit records, and health insurance claims, and additionally used results from cause of death models to inform estimates using a total of 68 781 data sources. Newly available clinical data from India, Iran, Japan, Jordan, Nepal, China, Brazil, Norway, and Italy were incorporated, as well as updated claims data from the USA and new claims data from Taiwan (province of China) and Singapore. We used DisMod-MR 2.1, a Bayesian meta-regression tool, as the main method of estimation, ensuring consistency between rates of incidence, prevalence, remission, and cause of death for each condition. YLDs were estimated as the product of a prevalence estimate and a disability weight for health states of each mutually exclusive sequela, adjusted for comorbidity. We updated the Socio-demographic Index (SDI), a summary development indicator of income per capita, years of schooling, and total fertility rate. Additionally, we calculated differences between male and female YLDs to identify divergent trends across sexes. GBD 2017 complies with the Guidelines for Accurate and Transparent Health Estimates Reporting. Findings: Globally, for females, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and haemoglobinopathies and haemolytic anaemias in both 1990 and 2017. For males, the causes with the greatest age-standardised prevalence were oral disorders, headache disorders, and tuberculosis including latent tuberculosis infection in both 1990 and 2017. In terms of YLDs, low back pain, headache disorders, and dietary iron deficiency were the leading Level 3 causes of YLD counts in 1990, whereas low back pain, headache disorders, and depressive disorders were the leading causes in 2017 for both sexes combined. All-cause age-standardised YLD rates decreased by 3·9% (95% uncertainty interval [UI] 3·1-4·6) from 1990 to 2017; however, the all-age YLD rate increased by 7·2% (6·0-8·4) while the total sum of global YLDs increased from 562 million (421-723) to 853 million (642-1100). The increases for males and females were similar, with increases in all-age YLD rates of 7·9% (6·6-9·2) for males and 6·5% (5·4-7·7) for females. We found significant differences between males and females in terms of age-standardised prevalence estimates for multiple causes. The causes with the greatest relative differences between sexes in 2017 included substance use disorders (3018 cases [95% UI 2782-3252] per 100 000 in males vs 1400 [1279-1524] per 100 000 in females), transport injuries (3322 [3082-3583] vs 2336 [2154-2535]), and self-harm and interpersonal violence (3265 [2943-3630] vs 5643 [5057-6302]). Interpretation: Global all-cause age-standardised YLD rates have improved only slightly over a period spanning nearly three decades. However, the magnitude of the non-fatal disease burden has expanded globally, with increasing numbers of people who have a wide spectrum of conditions. A subset of conditions has remained globally pervasive since 1990, whereas other conditions have displayed more dynamic trends, with different ages, sexes, and geographies across the globe experiencing varying burdens and trends of health loss. This study emphasises how global improvements in premature mortality for select conditions have led to older populations with complex and potentially expensive diseases, yet also highlights global achievements in certain domains of disease and injury

    Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 18·7% (95% uncertainty interval 18·4–19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2–59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5–49·6) to 70·5 years (70·1–70·8) for men and from 52·9 years (51·7–54·0) to 75·6 years (75·3–75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5–51·7) for men in the Central African Republic to 87·6 years (86·9–88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3–238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6–42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2–5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing

    Sparse, group-sparse and online Bayesian learning aided channel estimation for doubly-selective mmWave hybrid MIMO OFDM systems

    No full text
    Sparse, group-sparse and online channel estimation is conceived for millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. We exploit the angular sparsity of the mmWave channel impulse response (CIR) to achieve improved estimation performance. First a sparse Bayesian learning (SBL)-based technique is developed for the estimation of each individual subcarrier’s quasi-static channel, which leads to an improved performance versus complexity trade-off in comparison to conventional channel estimation. Then a novel group-sparse Bayesian learning (G-SBL) scheme is conceived for reducing the channel estimation mean square error (MSE). The salient aspect of our G-SBL technique is that it exploits the frequencydomain (FD) correlation of the channel’s frequency response (CFR), while transmitting pilots on only a few subcarriers, thus it has a reduced pilot overhead. A low complexity (LC) version of G-SBL, termed LCG-SBL, is also developed that reduces the computational cost of the G-SBL significantly. Subsequently, an online G-SBL (O-SBL) variant is designed for the estimation of doubly-selective mmWave MIMO OFDM channels, which has low processing delay and exploits temporal correlation as well. This is followed by the design of a hybrid transmit precoder and receive combiner, which can operate directly on the estimated beamspace domain CFRs, together with a limited channel state information (CSI) feedback. Our simulation results confirms the accuracy of the analysis

    Second-order statistics-based semi-blind techniques for channel estimation in millimeter-wave MIMO analog and hybrid beamforming

    No full text
    Semi-blind (SB) channel estimation is conceived for millimeter wave (mmWave) analog-beamforming (AB) and hybrid-beamforming (HB)-based multiple-input multiple-output (MIMO) systems, which also exploits the data symbols for improving the estimation accuracy. A novel aspect of the proposed framework is that it directly estimates the analog beamformer/combiner weights without necessitating the estimation of the entire mmWave MIMO channel matrix. By involving powerful matrix perturbation theoretic techniques, a closed-form expression is derived for the mean-squared-error (MSE) of the mmWave-AB-SB algorithm. As a further novelty, our mmWave-HB-SB technique relies on the decomposition of the channel matrix as the product of a decorrelating and a unitary matrix. Subsequently, the former is estimated purely relying on the unknown data symbols, whereas the latter is estimated exclusively from the training vectors. A lower bound on the MSE of the proposed mmWave-HB-SB technique is derived using the constrained Cramér-Rao lower bound (CRLB) framework. Furthermore, the performance gain of our mmWave-HB-SB technique over the conventional purely training-based scheme is also quantified analytically. Our simulation results demonstrate the superiority of the techniques advocated over the existing solutions and also verify the accuracy of our analytical findings

    Optimal Bit Allocation-Based Hybrid Precoder-Combiner Design Techniques for mmWave MIMO-OFDM Systems

    No full text
    This work conceives techniques for the design of hybrid precoders/combiners for optimal bit allocation in frequency selective millimeter wave (mmWave) multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, toward transmission rate maximization. Initially, the optimal fully digital ideal precoder/ combiner design is derived together with a closed-form expression for the optimal bit allocation in the above system. This is followed by the development of a framework for optimal transceiver design and bit allocation in a practical mmWave MIMO-OFDM implementation with a hybrid architecture. It is demonstrated that the pertinent problem can be formulated as a multiple measurement vector (MMV)-based sparse signal recovery problem for joint design of the RF and baseband components across all the subcarriers, and an explicit algorithm is derived to solve this using the simultaneous orthogonal matching pursuit (SOMP). To overcome the shortcomings of the SOMP-based greedy approach, an MMV sparse Bayesian learning (MSBL)-based state-of-the-art algorithm is subsequently developed, which is seen to lead to improved performance due to the superior sparse recovery properties of the Bayesian learning framework. Simulation results verify the efficacy of the proposed designs and also demonstrate that the performance of the hybrid transceiver is close to that of its fully-digital counterpart
    corecore